Skip to content

Building Manipulate Demonstrations in Mathematica

Manipulate creates interactive visualizations where parameters can be adjusted in real-time. Essential for:

  • Building intuition about mathematical relationships
  • Creating demonstrations for the dissertation
  • Exploring parameter spaces quickly
  • Visualizing how a function changes with parameters
  • Creating educational demonstrations
  • Rapid prototyping of ideas before formal analysis
  • Exporting interactive HTML for the blog
Manipulate[
expression,
{variable, min, max}
]

The expression is re-evaluated whenever variable changes.

Manipulate[
Plot[Sin[n x], {x, 0, 2 Pi}],
{n, 1, 10, 1}
]

Output: A sine wave with adjustable frequency. The slider goes from 1 to 10 in steps of 1.

Manipulate[
Module[{h, tangent},
h[p_] := If[p == 0 || p == 1, 0, -p Log2[p] - (1 - p) Log2[1 - p]];
tangent = h[p0] + h'[p0] (p - p0) /. p -> x;
Plot[{h[x], tangent}, {x, 0.001, 0.999},
PlotRange -> {0, 1.1},
PlotStyle -> {Blue, {Red, Dashed}},
AxesLabel -> {"p", "H(p)"},
PlotLabel -> StringForm["H(``} = `` bits",
NumberForm[p0, {3, 2}],
NumberForm[h[p0], {3, 3}]],
Epilog -> {PointSize[Large], Red, Point[{p0, h[p0]}]}
]
],
{{p0, 0.5, "Probability p"}, 0.01, 0.99, Appearance -> "Labeled"},
ControlPlacement -> Top
]

This creates an interactive exploration of the binary entropy function with:

  • Slider for probability pp
  • Tangent line showing the derivative
  • Current entropy value displayed
Manipulate[
Plot[a Sin[b x + c], {x, 0, 2 Pi}],
{{a, 1, "Amplitude"}, 0.1, 2},
{{b, 1, "Frequency"}, 0.5, 5},
{{c, 0, "Phase"}, 0, 2 Pi}
]
Manipulate[
Plot[PDF[dist, x], {x, -5, 10}],
{{dist, NormalDistribution[], "Distribution"},
{NormalDistribution[] -> "Normal",
ExponentialDistribution[1] -> "Exponential",
PoissonDistribution[3] -> "Poisson"}}
]
Manipulate[
ContourPlot[f[x, y, a, b], {x, -2, 2}, {y, -2, 2}],
{{a, 1}, -2, 2},
{{b, 1}, -2, 2},
ControlType -> Slider2D
]
Manipulate[
expr,
{t, 0, 10, AnimationRate -> 1}
]

Click the ”+” to access play/pause controls.

[!warning] Watch Out

1. Slow updates: If expression is computationally expensive, the interface will lag. Use ContinuousAction -> False to only update on release.

2. Variable scoping: Variables inside Manipulate can conflict with global definitions. Wrap complex logic in Module[].

3. Initial values: Always specify sensible defaults: {{x, defaultValue, "Label"}, min, max}

4. Export limitations: Not all features survive HTML export. Test early.

For expensive computations:

Manipulate[
expression,
{param, min, max},
ContinuousAction -> False, (* Only update on release *)
SynchronousUpdating -> False (* Allow interruption *)
]

For very heavy computations, precompute a table and interpolate:

data = Table[ExpensiveFunction[p], {p, 0, 1, 0.01}];
interp = Interpolation[Transpose[{Range[0, 1, 0.01], data}]];
Manipulate[
Plot[interp[x], {x, 0, 1}],
{param, 0, 1}
]
  • [[Mathematica Plot Customization]]
  • [[Exporting Mathematica to HTML]]
  • [[Dynamic and DynamicModule]]
  • Wolfram Documentation: Manipulate
  • Wolfram U: “Interactive Visualization” course